Медицинский сайт
  • Главная
  • Сперматогенез
  • Развертка боковой поверхности. Методические рекомендации по курсу начертательной геометрии. Построение разверток поверхностей

Развертка боковой поверхности. Методические рекомендации по курсу начертательной геометрии. Построение разверток поверхностей

Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.

Мы знаем, что такое конус, попробуем найти площадь его поверхности. Зачем нужно решать такую задачу? Например, нужно понять, сколько теста пойдет на изготовление вафельного рожка? Или сколько кирпичей понадобится, чтобы сложить кирпичную крышу замка?

Измерить площадь боковой поверхности конуса просто так не получится. Но представим себе все тот же рожок, обмотанный тканью. Чтобы найти площадь куска ткани, нужно разрезать и разложить ее на столе. Получится плоская фигура, ее площадь мы сможем найти.

Рис. 1. Разрез конуса по образующей

Сделаем так же с конусом. «Разрежем» его боковую поверхность вдоль любой образующей, например, (см. рис. 1).

Теперь «размотаем» боковую поверхность на плоскость. Получаем сектор. Центр этого сектора - вершина конуса, радиус сектора равен образующей конуса, а длина его дуги совпадает с длиной окружности основания конуса. Такой сектор называется разверткой боковой поверхности конуса (см. рис. 2).

Рис. 2. Развертка боковой поверхности

Рис. 3. Измерение угла в радианах

Попробуем найти площадь сектора по имеющимся данным. Сперва введем обозначение: пусть угол при вершине сектора в радианах (см. рис. 3).

С углом при вершине развертки нам придется часто сталкиваться в задачах. Пока же попробуем ответить на вопрос: а не может ли этот угол получиться больше 360 градусов? То есть не получится ли так, что развертка наложится сама на себя? Конечно же, нет. Докажем это математически. Пусть развертка «наложилась» сама на себя. Это означает, что длина дуги развертки больше длины окружности радиуса . Но, как уже было сказано, длина дуги развертки есть длина окружности радиуса . А радиус основания конуса, разумеется, меньше образующей, например, потому, что катет прямоугольного треугольника меньше гипотенузы

Тогда вспомним две формулы из курса планиметрии: длина дуги . Площадь сектора: .

В нашем случае роль играет образующая , а длина дуги равна длине окружности основания конуса, то есть . Имеем:

Окончательно получаем: .

Наряду с площадью боковой поверхности можно найти и площадь полной поверхности. Для этого к площади боковой поверхности надо прибавить площадь основания. Но основание - это круг радиуса , чья площадь по формуле равна .

Окончательно имеем: , где - радиус основания цилиндра, - образующая.

Решим пару задач на приведенные формулы.

Рис. 4. Искомый угол

Пример 1 . Разверткой боковой поверхности конуса является сектор с углом при вершине. Найти этот угол, если высота конуса равна 4 см, а радиус основания равен 3 см (см. рис. 4).

Рис. 5. Прямоугольный треугольник, образующий конус

Первым действием, по теореме Пифагора, найдем образующую: 5 см (см. рис. 5). Далее, мы знаем, что .

Пример 2 . Площадь осевого сечения конуса равна , высота равна . Найти площадь полной поверхности (см. рис. 6).

Разверткой поверхности называется плоская фигура, образованная последовательным совмещением поверхности с плоскостью без разрывов и складок. При развертывании поверхность рассматривается как плоская, но нерастяжимая. Цель развертывания поверхностей – создание моделей поверхностей из листового материала путем последующего изгибания и «свертывания» их разверток.

Основные свойства разверток:

Прямая на поверхности переходит в прямую на развертке;

Параллельные прямые на поверхности переходят в параллельные прямые на развертке;

Длины отрезка линии на поверхности и той же линии на развертке равны;

Углы между линиями на поверхности и между соответствующими линиями на развертке равны;

Площадь развертки равна площади поверхности;

Все размеры на развертке имеют натуральную величину.

Все поверхности подразделяются на развертываемые и неразвертываемые.

К развертываемым поверхностям относятся:

Гранные поверхности (пирамиды, призмы и т.д.), т.к. плоские элементы многогранника точно совмещаются с плоскостью развертки. В этом случае развертка называется точной.

Линейчатые поверхности (цилиндрические, конические и поверхности с ребром возврата), т.е. это поверхности, у которых смежные образующие-прямые параллельны или пересекаются.

К неразвертывающимся поверхностям относятся все остальные линейчатые, а также нелинейчатые поверхности (цилиндроиды, коноиды, сфера). Развертки этих поверхностей в этом случае называются приближенными или условными.

1.5.1 Развертка поверхностей многогранников

При построении разверток многогранников определяют натуральную величину всех его граней (плоских многоугольников). При этом используют различные способы преобразования чертежа. Выбор тех или иных способов зависит от вида многогранника и его расположения относительно плоскостей проекций.

1.5.1.1 Развертка поверхности призмы

Существует два способа развертки призмы: способ «нормального сечения» и способ «раскатки».

Способ «нормального сечения» используют для развертки поверхности призм общего положения. В этом случае строится нормальное сечение призмы (т.е. вводится плоскость, расположенная перпендикулярно боковым ребрам призмы) и определяются натуральные величины сторон многоугольника этого нормального сечения.

Пример выполнения развертки трехгранной призмы общего положения способом «нормального сечения» рассмотрим в задаче согласно рисунка 1.5.1

Обратим внимание на то, что в нашем случае боковые ребра призмы являются фронталями, т.е. на плоскость П 2 они проецируются в натуральную величину.

1) Во фронтальной плоскости проекций построим фронтально проецирующую плоскость γ(γ 1 ) , которая одновременно перпендикулярна боковым ребрам призмы AD , CF , BE . Полученное нормальное сечение выразится в виде треугольника 123 . Методом плоско-параллельного перемещения определим его натуральную величину в соответствии с рисунком 1.5.2.

2) Все стороны нормального сечения последовательно отложим на прямой: 1 0 2 0 =1 1 1 2 1 1 ; 2 0 3 0 =2 1 1 3 1 1 ; 3 0 1 0 =3 1 1 1 1 1 .

3) Через точки 1 0 ,2 0 ,3 0 проведем прямые, перпендикулярные прямой 1 0 -1 0 и отложим на них натуральную величину боковых ребер: 1 0 D 0 =1 2 D 2 и 1 0 A 0 = 1 2 A 2 ; 2 0 F 0 = 2 2 F 2 и 2 0 C 0 = 2 2 C 2 ; 3 0 E 0 = 3 2 E 2 и 3 0 B 0 = 3 2 B 2 .

4) Полученные точки верхнего и нижнего оснований призмы соединим прямыми A 0 B 0 C 0 и D 0 F 0 E 0 . Плоская фигура A 0 B 0 C 0 D 0 F 0 E 0 является искомой разверткой боковой поверхности данной призмы. Для построения полной развертки необходимо к развертке боковой поверхности пристроить натуральные величины оснований. Для этого воспользуемся полученными на развертке натуральными величинами их сторон A 0 C 0 , C 0 B 0 , B 0 A 0 и D 0 F 0 , F 0 E 0 , E 0 D 0 в соответствии с рисунком 1.5.3

Рисунок 1.5.1

Рисунок 1.5.2

Рисунок 1.5.3 – Развертка призмы способом «нормального сечения»

Способ «раскатки». Этот способ удобен для построения разверток призм с основанием, лежащим в плоскости уровня. Суть способа заключается в последовательном совмещением боковых граней с плоскостью чертежа путем поворота их вокруг соответствующих ребер призмы (рисунок 1.5.4).

Этим способом построена развертка поверхности призмы ABCDEF , боковые ребра которой являются фронталями, а нижнее основание лежит в горизонтальной плоскости (рисунок 1.5.5).

1) Боковые грани призмы совместим с фронтальной плоскостью, проходящей через ребро AD . Это удобно в этом случае, т.к. фронтальные проекции боковых ребер призмы равны их истинной длине. Тогда ребро A 0 D 0 развертки будет совпадать с фронтальной проекцией ребра AD (A 2 D 2 ) .

2) Для определения на развертке истиной величины боковой грани ADEB вращаем ее вокруг ребра AD до положения, параллельного фронтальной плоскости проекций. Чтобы определить на развертке положение точки B 0 , из точки B 2 восстанавливаем перпендикуляр к A 2 D 2 . Точка B 0 будет найдена в пересечении этого перпендикуляра с дугой окружности радиуса R 1 , равного истиной величине ребра AB и проведенной из точки A 2 , как из центра.

3) Точка E 0 будет определяться на развертке как результат пересечения прямой B 0 E 0 параллельной фронтальной проекцией ребра BE (B 2 E 2 ), и перпендикуляра, восстановленного из точки E 2 к A 2 D 2 .

4) Точки C 0 и A 0 построены аналогично точке B 0 в пересечении перпендикуляров из точек C 2 и A 2 к фронтальным проекциям ребер, с дугами окружностей, проведенных из точек B 0 и C 0 как из центров радиусами R 2 и R 3 , равными соответственно ребрам BC и CA . Точки F 0 и D 0 определяются аналогично точке E 0 .

5) Соединив последовательно совмещенные вершины ломаными линиями, получим развертку боковой поверхности призмы A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 . При необходимости можно получить полную развертку призмы, присоединив к ней натуральные величины обоих оснований.

Если боковые ребра призмы занимают общее положение, то предварительным преобразованием чертежа их надо привести в положение линий уровня.

Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов и других изделий необходимо из листового материала вырезать их развертки.

Разверткой поверхности многогранника называют плоскую фигуру, полученную в результате последовательного совмещения с плоскостью чертежа всех граней многогранника.

Построение разверток поверхности многогранников состоит из определения натуральной величины граней и построения на плоскости в последовательном порядке всех граней. Размеры граней, если они спроецированы не в натуральную величину, находят способами вращения или перемены плоскостей проекций, приведенными в предыдущем параграфе.

Рассмотрим построение разверток некоторых простейших тел.

Развертка поверхности прямой призмы представляет собой плоскую фигуру, составленную из боковых граней – прямоугольников и двух равных между собой многоугольников оснований. Для примера взята правильная шестиугольная призма (рис. 4.17, а). Боковые грани призмы представляют собой равные между собой прямоугольники шириной а и высотой Я, а основания – правильные шестиугольники со стороной, равной а. Так как размеры граней известны, построение развертки нетрудно выполнить. Для этого на горизонтальной прямой последовательно откладывают шесть отрезков, равных стороне основания а шестиугольника, т.е. 6а . Из полученных точек восставляют перпендикуляры длиной, равной высоте призмы Я. Соединяя полученные отрезки, проводят вторую горизонтальную прямую. Полученный прямоугольник (H × 6a ) является разверткой боковой поверхности призмы. Затем на одной оси пристраивают фигуру оснований – два шестиугольника со сторонами, равными а. Контур обводят сплошной основной линией, a линии сгиба – штрихпунктирной тонкой с двумя точками.

Рис. 4.17.

С помощью подобного построения можно вычертить развертки прямых призм с любой фигурой в основании. Разница будет лишь в количестве и ширине граней боковой поверхности.

Аналогично строится и развертка поверхности цилиндра (рис. 4.17, б ). Только ширина ее равняется πd (длине окружности основания).

Развертка поверхности правильной пирамиды представляет собой плоскую фигуру, составленную из боковых граней – равнобедренных или равносторонних треугольников и правильного многоугольника основания. Для примера взята правильная четырехугольная пирамида (рис. 4.18a ). Решение задачи осложняется тем, что неизвестна величина боковых граней пирамиды, так как их ребра не параллельны ни одной из плоскостей проекций. Поэтому начинают построение с определения величины ребра способом вращения (см. рис. 4.15, в ). Определив длину наклонного ребра SA, равную s"a" 1, проводят из произвольной точки 5, как из центра, дугу окружности радиусом s"a" 1. По этой дуге откладывают четыре отрезка равных стороне основания пирамиды, которое на чертеже спроецировалось в истинную величину. Найденные точки соединяют прямыми с точкой s. Получив таким образом развертку боковой поверхности, пристраивают к основанию одного из треугольников квадрат, равный основанию пирамиды.

Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 4.18, б ).

Рис. 4.18.

Построение выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, очерчивают радиусом R 1, равным образующей конуса s"a" 1, дугу окружности. Затем подсчитывают угол сектора по формуле α = 360° R/L, где R – радиус окружности основания конуса; L – длина образующей боковой поверхности конуса. В примере α = 360° 15/38 ≈ 142,2°.

Этот угол строят симметрично относительно осевой линии с вершиной в точке S. К полученному сектору пристраивают круг с центром на осевой линии и диаметром, равным диаметру основания конуса.

Построение разверток


К атегория:

Медницко-жестяницкие работы

Построение разверток

Чтобы изготовить пустотелые изделия различной формы, нужно разметить на листе развертку этого изделия. Наиболее часто составляющие части изделия имеют формы цилиндра и конуса, поэтому рассмотрим построение разверток этих фигур.

Развертка прямого цилиндра представляет собой прямоугольник (рис. 1, а), ширина которого равна высоте цилиндра Н, а длина - длине окружности цилиндра. Для определения этой длины диаметр цилиндра D умножают на число 3,14, обозначаемое в формулах греческой буквой п.

Длина окружности цилиндра определится по формуле L = nD = 3.14D.

Например, если цилиндр имеет диаметр 100 мм, то длина развертки L = 3,14 100 = 314 мм. При этом расчете

he учитывают длину материала, идущего на соединительный шов. Полная длина развертки равна длине окружности плюс припуск на шов.

Рис. 1. Построение развертки цилиндра; а - прямого: о - усеченного

Развертка усеченного цилиндра представлена на рисунке 5 б. В натуральную величину вычерчены две проекции усеченного цилиндра: вид сбоку и вид сверху (план). Окружность круга (основания цилиндра) делят на несколько равных частей, проще всего на 12; в результате получают точки 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Эти точки соединяют линиями, перпендикулярными диаметру 1-7,

с наклонной линией верхней проекции 1‘-7’. При пересечении получают точки Г; 2’, 12’; 3’, 11’; 4’, 10’; 5’, 9’; 6’, 8’ и 7’. Вправо от верхней проекции проводят линию АБ, которая является продолжением линии аб (основания верхней проекции) и по длине равняется длине окружности основания цилиндра (L = 3,14D). Линию АБ делят на 12 равных частей. Из каждой точки на линии АБ восстанавливают перпендикуляры, а из каждой точки на наклонной Г-V проводят линии, параллельные прямой АБ, до пересечения с этими перпендикулярами. Пересечение линии, проведенной из точки 1’, с перпендикуляром, восстановленным из точки 1 на линии АБ, даст точку I развертки; пересечение линии, проведенной из точки 2’, с перпендикуляром, восстановленным из точки 2, даст точку II развертки и т. д. Соединив все полученные точки плавной кривой, получают развертку усеченного цилиндра в натуральную величину. Если изделие соединяется фальцевыми швами, к развертке прибавляют припуск на швы.

Рис. 2. Построение развертки конуса; а - прямого; б - усеченного

Развертка конуса приведена на рисунке 2а. Для ее построения вычерчивают в натуральную величину боковую проекцию конуса, которая представляет собой треугольник. Высота треугольника равна высоте конуса (h), а основание - диаметру окружности, лежащей в основании конуса (D). На боковой проекции конуса измеряют циркулем сторону треугольника, обозначенную на рисунке буквой, и, не изменяя развода циркуля, проводят рядом с проекцией часть окружности радиусом, равным. От точки А, лежащей на дуге этой окружности, откладывают расстояние, равное L = 3,14D. Для этого берут тонкую проволоку длиной L = 3,14D и от точки А откладывают ее по дуге. Там, где проволока кончится, отмечают точку Б и соединяют точки А и Б с центром О. Полученная фигура АОБ - развертка боковой поверхности конуса. При соединении конуса фальцевым швом прибавляют припуск на шов.

Для ускорения и упрощения построения развертки основание треугольника (боковой проекции конуса) делят на 7 частей, а затем, отмерив циркулем одну такую часть, откладывают от точки А по дуге 22 такие части. В этом случае длина дуги АБ будет равняться 3.14D, так как если представить число 3,14 простой дробью, то оно выглядит как 22/7.

Развертка боковой поверхности усеченного конуса показана на рисунке 2. Построение ее аналогично построению развертки для неусеченного конуса.


Лучшие статьи по теме